

Identifying Opportunities for Operational Improvement Using Non-Invasive Methods

Melissa Sokolowsky Senior Project Manager

Northwest Energy Efficiency Council Smart Buildings Center smartbuildingscenter.org

Image source: Image by Jorge Molina from Pixabay

NORTHWEST ENERGY EFFICIENCY COUNCIL

NEEC's mission is to promote energy efficiency policies, programs and technologies that create jobs and foster economic growth and environmental improvement

> Smart Buildings Center · Pacific Tower, 1200 12th Ave. S., Seattle, WA 98144 · 206-538-0685 © 2019 · Northwest Energy Efficiency Council

SMART BUILDINGS CENTER

Non-profit Education Program Events - Networking Training – Classes, Webinars Demonstration – Data Visualizations, Tool Lending Library

TOOL LENDING LIBRARY

FREE !!!

- Diagnostic & monitoring tools
- 85 tool types
- Online reservation system
- Loan period up to 4 weeks
- Local pickup or shipped

BUILDING OPERATOR CERTIFICATION

Meeting the challenge of an evolving workforce

Smart Buildings Need Smart Operators!

- Continuing trend toward sensor-based building system automation
- Operator skill sets diversifying:
 - Mechanical
 - Technical
 - Data Analysis
 - Communication

Certified Building Operators in the PNW save their orgs up to \$20,000 annually!

Objectives

- Discuss the importance of building re-tuning
- Learn about useful monitoring and diagnostic tools
- Discuss non-invasive methods to identify opportunities for energy savings and operational improvement
- Learn how to analyze data for specific use cases

Life Cycle of Building Re-Tuning (or Re-Commissioning)

Time

Common Re-tuning Measures: PNNL Analysis of 100 Buildings

Building Re-tuning Major Focus Areas

- 1. Heating, Ventilation and Air-Conditioning Systems and Controls
- 2. Lighting System and Controls
- 3. Domestic Hot Water
- 4. Water Use
- 5. Building Envelope

Building Re-tuning Basic Energy Management Principles

- If you don't need it, turn it off
- If you don't need it at full power, turn it down
- Make "smart" energy decisions when adjusting systems to the real building needs
- Save energy without negatively impacting the comfort of the occupants

Building Re-tuning Approach

Use a four step approach

- 1. Initial data collection phase: Collection of information about the building
- 2. Investigation phase: Building walk down to identify and characterize the building operations
- **3.** Implementation phase: Application of prescriptive re-tuning measures
- 4. Documentation phase: Reporting of measures implemented and calculation of energy savings

Building Walk Down: Guidance

- While walking down to investigate the building's condition and operations, be vigilant, use your senses – look, listen, smell and touch (be careful!)
- If possible, perform the walk down during both occupied hours and unoccupied hours
- A lot of energy waste typically occurs during unoccupied periods and holidays
- Walk down at least once during the heating season and the cooling season
- Document your observations

"You can observe a lot by just watching." —Yogi Berra

Sampling is OK

- Where there are multiple pieces of similar equipment use sampling in your investigation
 - Observe and test 12% of equipment type
 - But no fewer than a sample size of 10 for buildings <100,000 sf and no fewer than 20 for buildings >=100,000 sf

Heat Pumps

VAV Terminal Units

VRF Terminal Units

Building Walk Down: Tools to Carry

Safety Check-in

Image source: Mitchellinstrument.com

HVAC Assessment Elements

- 1. Equipment scheduling
- 2. Review setpoints
- 3. Review reset schedules and setpoints
- 4. Review optimum start/stop if applicable
- 5. Sensor calibration (critical sensors)
- 6. Controls functional testing
- 7. Simultaneous heating and cooling
- 8. Air balance issues
- 9. Ventilation
- 10. Identify any "rogue" temperature zones on multi-zone systems
- 11. Recommended maintenance, cleaning and repair

Data Logging Applications

- Confirm equipment start/stop schedules
- Verify HVAC setpoints
- Measure and control plug loads
- Troubleshoot hot/cold calls
- Troubleshoot lighting control systems

HVAC Equipment Scheduling

- Small/medium-sized commercial buildings typically lack central controls
- Typically have wall mounted thermostats to control both heating and cooling systems
- While surveying the thermostats and their capabilities, check:
 - Location of thermostat? Does sun shine on it?
 - Type of thermostat, mechanical or digital?
 - If digital, is it programmable?
 - If mechanical, replacing it with a programmable digital thermostat will save energy, if it is properly programmed

Equipment Start/Stop Schedules

<u>Application:</u> Supply fans, return fans, exhaust fans, boilers, chillers, circulation pumps

<u>Diagnostic Approach</u>: Log equipment operating schedule and compare to building occupancy

Onset Hobo Motor Logger

1140		
(DENT		
Unit of		
T	1	

Dent ElitePro XC Energy logger

Fluke 1730 Energy Logger

Dent Motor Maglogger

Occupancy Scheduling: Set back for Unoccupied Hours

During unoccupied hours, the system should be set back so that the system does not continue to operate

Outdoor Air Damper during Unoccupied Hours

The outdoor-air damper should close at the end of the occupied time, and stay closed overnight.

Equipment Scheduling Motor Logger

Use BAS trend data or data logger to verify start/stop scheduling of fans and pumps

Logger Placement

Logger indicates motor on/off status

Image courtesy of Onset Computer Corp.

Example Motor Logger Data

Fan Motor on VAV Box running 24/7

Verify HVAC Setpoints

<u>Application:</u> Zone temperature, supply air temperature, boiler supply water, outside air temperature,

<u>Diagnostic Approach</u>: Measure or log temperature conditions and compare to setpoint

Example Room Temperature Log

DINGS

ΓER

Trends to Look for: Zone Conditioning

- Is there night-time set back/unoccupied mode at the zone level?
- Is there significant reheat occurring at the zones, especially interior zones or during summer (cooling) seasonal periods?
- Excessively high minimum air flow rates for VAV terminal boxes may result in significant reheat, especially if the primary air temperature is extremely low
- Compare minimum airflow set points to maximum airflow set points (ratio). If the minimum is more than 50% of the maximum, this could indicate excessive ventilation and/or terminal box airflow rates when the space is trying to heat.
- How many zones are in heating mode and how many are in cooling mode?
- Occupant complaints (temperature or indoor air quality) may be related to the zone conditioning.
- Cold complaints may indicate AHU primary air temperatures that are too cold (does the AHU reset the discharge-air temperature set point?) and/or may indicate terminal box minimum airflow rates that are too high.

Review Reset Schedules & Setpoints

- 1. HW loop temperature
- 2. CHW loop temperature
- 3. HW loop differential pressure
- 4. CHW loop differential pressure
- 5. Discharge air temperature
- 6. Duct static pressure
- 7. Optimum start

Set or adjust to optimize function and energy efficiency – Use your judgement!

Example Supply Reset Log

SMART

DINGS

'ER

Sensor Calibration

Check sensor error for critical sensors

- 1. Outside air temperature
- 2. Discharge air temperature
- 3. HW loop supply & return temperature
- 4. CHW loop supply and return temperature
- 5. CO2 sensors
- 6. Condenser water supply and return temperature

Identify where sensors should be replaced. Adjust or

replace as required.

HVAC Controls Functional Testing

Functionally test all modes of operation

- Occupied
- Unoccupied
- Warm-up
- Over-ride
- Others...

Adjust control sequences as appropriate for current facility requirements

Simultaneous Heating & Cooling

Review HVAC control sequences for unintended instances of heating and cooling

- IR images of coils
- Cooling with perimeter heat
- 4-pipe fan-coils
- Large open spaces with multiple HVAC systems
- Heat/cool lockouts

Open Office on Upper Level – VAV's serving same open area operating in both heating/cooling

Open Office on Upper Level – adjacent diffusers in heating and cooling

Adjust control sequences as to reduce or eliminate and unintended simultaneous heating & cooling

Identify Zones Dominating Multiple Zone Systems

24/7 dispatch center in an office building

Server Rooms Served by Central HVAC

Identify zones that may be dominating multi-zone system operations. Recommend solutions to isolate these zones.

Air Balance Issues

COMMON PROBLEMS CAUSED BY AN UNBALANCED HVAC SYSTEM

Note any indications of significant air balancing issues. Recommend re-balancing where significant efficiency or comfort improvements can be achieved

Compressed Air or Steam – Leak Detection

Image source: Superior AccuTrak

HVAC Maintenance, Cleaning & Repair

What to look for:

- Dirty filters, ducting, grilles, coils
- Missing or damaged panels/access doors or seals
- Missing or damaged mechanical items (fan motors/blades/belts, pulleys)
- Missing or damaged duct and pipe insulation
- Stuck HVAC dampers
- Equipment at the end of its service life

Clean or replace filters, repair damaged equipment, repair/adjust faulty dampers.

Jammed/Frozen Damper

Disconnected

Damper

Wired poorly

Lighting System & Controls

Application: Evaluating light levels and automatic control systems

<u>Diagnostic Approach</u>: Measure light levels and compare to standards, verify correct operation of occupancy sensors

Light Level logger

Lighting meter

LED Lighting meter

Light/Occupancy

Lighting Levels

- Spot check lighting levels by use type
 - Identify areas where the lighting power density could be reduced

Activity	Space Types	Recommended Illumination (lux)	Foot Candles (FC)
Public areas with dark surroundings	Parking garage	20 - 50	2-5
Simple orientation for short visits	Lobbies, storage areas, corridors	50 - 100	5-10
Working areas where visual tasks are only occasionally performed	Waiting areas, auditoriums	50 - 150	5-15
Easy Office Work, Classes	Certain offices and classrooms	200-300	20-30
Normal Office Work, PC Work, Study Library, Groceries, Show Rooms, Laboratories	Certain offices, classrooms, libraries	350-500	35-50
Retail	Supermarkets, Mechanical Workshops	300-800	30-80
		NORTHWEST ENERGY	

EFFICIENCY COUNCIL

Automatic lighting controls

- Verify occupancy/vacancy sensors working correctly (sampling OK)
- Identify areas that could benefit from occupancy sensor or daylight harvesting
- Verify exterior lighting controls function correctly

light/occupancy logger

Lighting Control Schedules

- Verify lighting on/off schedules match occupancy. Set or adjust as appropriate.
 - Stand-alone control or BAS interface?

EFFICIENCY COUNCIL

- Correct time and day?
- Overrides?
- Override length?
- All lights controlled?

Light/Occupancy Logger Data

Does lighting system operation match occupancy?

Lighting Maintenance

- Identify inefficient lighting equipment
 - Incandescent or metal halide fixtures
 - Fluorescent fixtures
 - Magnetic ballasts

Ballast checker

Domestic Hot Water Systems

- Measure hot water supply temperature
 - Adjust setpoint for occupancy and use if appropriate
 - Seattle Plumbing Code 407.3 maximum hot water temperature to public lavatories is 120F
- Review circulation pump controls
 - Set or adjust as appropriate
 - No controls, integral control or BAS?

Control by BAS

No control

Integral control

Water Usage - Ultrasonic Flow Meters

Water Usage – Cooling Towers

- Verify conductivity meter used to control blowdown is calibrated and functioning properly
 - Measure sump conductivity
 - Calibrate water treatment controller

EFFICIENCY COUNCIL

Water Usage – Irrigation Systems

- Irrigated area >500 ft2
 - Review irrigation schedule for improvements
- Verify irrigation sensors are functioning properly
 - Locate rain sensor. Override irrigation zone you can see and activate sensor
 - Test continuity
 - Adjust, calibrate or repair/replace as required

Rain sensor/switch

Water Usage – Water Features

- Review water feature schedules
 - Set to shut-down during night time or unoccupied periods where appropriate

Water Usage – Maintenance, Cleaning & Repair

- Check irrigation system for leaks, overspray, broken heads, plugged nozzles or other operational problems
 - Adjust and repair as appropriate

Water Usage – Maintenance, Cleaning & Repair

- Check hands free sensor-activated plumbing fixtures for proper operation
- Check water flow rate for fixtures
 - Recommend low-flow fixture or aerator replacement if appropriate
 - 2015 Seattle Plumbing Code Maximum Water Consumption
 - 0.25 GPM metered public faucets
 - 0.5 GPM public lavatories
 - 2.2 GPM private lavatories
 - 2.5 GPM kitchen faucet
 - 2.5 GPM shower head
 - Evaluate cooling towers for leaks and

Building Envelope: Maintenance, Cleaning, Repair

- Check for unsealed penetrations that allow for entry of air or water
- Check for missing weather-stripping at doors & windows
- Check elevator shaft dampers- stuck open or leaky
- Identify uninsulated attic areas or insulation damage
- Identify any significant duct leakage (disconnected ducting or holes)

Gaps under doorways

Failed roof insulation

Thermography - Benefits

- Non-invasive
- Saves time/money
- Easy to use
- Broad range of applications: Building envelope, plumbing, electrical
- See the full picture
- Verify and/or pinpoint issues

EFFICIENCY COUNCIL

 Identify minor faults early, before they grow

Thermography - Applications

- Building Envelope
- Plumbing
- HVAC
- Electrical
- More!

Thermal Envelope Applications

Thermal Envelope Applications

• Roof moisture – test at night after a warm day

Thermal Envelope Applications

• Water leak in wall

Plumbing

Plumbing

• Heating wire on outdoor water line

Tank levels

- Locate misrouted and leaking ducts
- See electrical or mechanical HVAC system faults
- Confirm the source of energy losses
- Find missing insulation
- Discover AC condensate leaks

• Failing connector on a motor

 Motor bearing warmer than casing could be a sign of a problem

Normally operating pump motor (uniform thermal signature)

Source: Fluke

Electrical Applications

Hot spot doesn't always indicate the primary problem (blown fuse)

Electrical Applications

Review

- Building re-tuning is a systematic process to identify and correct no/low cost operational problems that lead to energy waste
- Major focus areas are HVAC, Lighting, Domestic Hot Water, Water Usage, & Building Envelope
- Building re-tuning is observation and data driven

QUESTIONS ?

Melissa Sokolowsky <u>melissa.sokolowsky@neec.net</u> smartbuildingscenter.org

